THEORY OF A LAVAL NOZZLE FOR A TWO-PHASE MIXTURE
CONTAINING PARTICLES OF SMALL LAG

A. N. Kraiko and R. A. Tkalenko UDC 533.6.011.3

A two-velocity and two-temperature model is considered for a continuous medium in relation
to the flow of a mixture of gas and particles in the subsonic, transsonic, and supersonic parts
of a Laval nozzle. It is assumed that the particles are small, and hence that the coefficients
(/)f and ¢4, which define the interaction with the gas, are large (these coefficients are inverse-
ly proportional to the square of the particle radius for a Stokes mode of flow). This means
that the velocity or thermal lag of the particles relative to the gas is small. The solution is
sought as expansions with respect to the small parameters £,= VeJ and g,= V4.

The first problem is one of special perturbations, which arise from the formation of a layer of pure
gas near the wall on account of particle lag; if €, 0, the thickness of this layer tends to zero, but the dif-
ference in the values of the gas parameter at the wall and at the boundary of the layer remains finite.
Equations are derived that describe with accuracies £, and &, the flow of the mixture of gas and particles
at the core, together with equations that define the gas parameters in the wall layer. It is found that this
layer resembles an ordinary boundary layer in that the pressure change across it is a quantity of higher
order than the change in the other parameters. To solve the equations that define the characteristics of
the mixture at the core, use is made of an expansion with respect to the small parameter € = ¥R, where R
is the radius of curvature of the nozzle wall in the minimal cross section, as referred to the radius at that
section.

The two-phase flow in a Laval nozzle has been considered [1-3] in the one-dimensional approximation
by expansion with respect to &, and &, for one of these parameters; the expansion with respect to £ used
here is analogous to the method of [4] for solving problems in the theory of Laval nozzles for pure gas.
FExact published results are available within the framework of the two-liquid model for the flow of a mix-
ture of gas and particles. but these are restricted to the supersonic part of the nozzle, where the parame-
ters of the gas and particles are derived by the direct methods of characteristics [5-11] or by inverse meth-
ods [12-14].

On the other hand, we are not aware of any papers in which solutions have been obtained for the theory
of Laval nozzles for nonequilibrium two-phase flow for the supersonic and subsonic or transsonic parts
without involving additional assumptions; of the available approximate approaches, we may note the very
widely used method of integrating the equations of energy and motion for the particles (these equations are
ones in total derivatives along the particle flow lines), which are used for the equilibrium parameters of
the mixture [15], while there is also the method of [16]. in which it was assumed that the distributions of
the pressure and the inclination of the gas velocity vector are the same for the equilibrium and nonequilibri-
um two-phase flows. There is some justification for using these approximate approaches for comparatively
small relative flow rates of the particles, but at high relative flow rates the assumptions may involve sub-
stantial errors.

The presence of a layer of pure gas near the wall also hinders the formulation and solution of the
inverse problem, while the method of [17-19], which is very effective for a pure gas, becomes difficult to
use when there is little particle lag and the layer is thin. It may be that the relationships derived below
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for the wall layer should be used in conjunction with the methods noted above. In this connection we must
stress that these relationships apply for any €, when the layer is thin by comparison with the characteristic
dimension of the nozzle. This arises because €, appears in the equations only via the thickness of the layer
when there are no particles, and this thickness, as we shall see, is proportional to £, when the particle lag
is small.

1. We use a rectangular or cylindrical system of coordinates to consider the flow of gas mixed with
particles in a planar or axially symmetrical Laval nozzle (Fig. 1). We locate the origin in the plane of
minimum cross section of the nozzle, with the x axis directed from left to right (along the flow) along the
axis or symmetry plane, while the y axis is perpendicular to the x axis. If there are no external sources
of heat or force, and if we neglect the volume of the particles, we get the following equations for the flow
within the framework of the two-fluid model [5-14, 20]:
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p=pT, h=;—i(_—i'T, e, = 8T,

Here p is pressure, h is specific enthalpy, T is temperature, ¢ is density, u and v are the projections
of the gas velocity vector on the x and y axes, Tg,8,, ug, and vg are the corresponding quantities for the
particles, eg is the specific internal energy of the particles, and the coefficients <Pf and ¢9, which we take
to be constants, which corresponds to Stokes flow around each particle, characterize the dynamic and therm
al interaction between the gas and the particles; ¥ = 0 or 1 respectively in the planar and axially symmetri-
cal cases. We assume that the gas is perfect, with constant specific heats and ratio w, while the internal
energy of the particles is a linear function of the temperature (6 is a constant equal to the specific heat of
the particles).

All the quantities are taken as dimensionless in {1.1) and subsequently. Let L, q,, and p, be charac-
teristic quantities with the dimensions of length, velocity, and density, while R is the dimensional value of
the gas constant. Then we perform the reduction to dimensionless form by referring the spatial variables
to L, the velocities to q,, the densities to p,, the pressures to 0,q,°, the enthalpy and internal energy to q,?’,
the temperature to qx2/R, and the specific heat of the particles to R. As L we take the radius or half height
of the minimal section of the nozzle, while as q, and p, we take the critical velocity and density for the
equilibrium flow, i.e., flow without particle lag, where Ug=u, g =V, and Tg=T.

The boundary conditions for (1.1 are the condition for absence of flow at the wall, which is specified
by the equation y = y(x), and the symmetry condition for y= 0, these taking the form
v (z, Yo) = Y’ (2) u(z, Yu)s ¥ (z,0) =0 (1.2)

and

ug==u, vy=v, I;=T (z——o00) (1.3)

The prime in (1.2) and subsequently denotes the total derivative with
respect to the corresponding argument (in this case x),

Equation (1.3) applies when the nozzle is joined on the left to a semi-
infinite cylindrical tube (here the vertical components of the velocities of
gas and particles tend to zero, while the limiting values of the horizontal
components differ from zero) and when the nozzle expands without limit
Fig. 1 for x— — {(then both components of the velocities tend to zero). Apart
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from (1.2) and (1.3), we have to specify the entropy and total enthalpy, and also the density ratio of the part-
icles and gas © /0 at the inlet to the nozzle {for x——=). We restrict ourselves to the case where these
quantities are constant over the cross section \a uniform flow at the inlet) and take account of the choice
of q, and p, to write these conditions in the form

_mP e %t p__1

(,~1)pg = 2 2x,—1) " (px)xe x,

9 {—m

B T Tm {2 - —c0) (1.4)

Here py is the total density of the mixture, while q is the modulus of the velocity (g tends to u or to
0 for x —— =), m is a specified constant that does not exceed unity (gas flow rate), and Yo is the adia-
batic parameter of the equilibrium two-phase mixture:
k4 o -m ‘5\

/
lo-= +
x—1 VT R—1 T T m /

2. If <p/ is finite, a layer free from particles is formed near convex parts of the wall on account of
particle lag. this layer being bounded at the top by the wall of the nozzle, at which condition (1.2) is obeyed
for the gas. Downwards, this layer of pure gas is bounded by the line y = yd\x). which is the limiting current
line for the particles, which is shown in Fig. 1 as a broken line defined by the equation

ya' = (vs / ug (2.1)

Here the subscript d denotes the parameters on the separation line. In the general case, the proper-
ties of system (1.1) mean that Pg changes abruptly on passing through this boundary from some finite value
to zero, which leads to discontinuity in the first derivatives for the gas parameters. We shall see below
that the gas enters the wall layer and thickens it when the particle lag is small near the convex part [yw“(x)
=0].

To describe the flow in the region free from particles we use a coordinate system linked to the con-
tour of the nozzles 7n. where 7 lies along the wall (from left to right, as shown in Fig. 1), while n lies along
the normal to the latter into the gas. If ¢ is the angle hetween the internal normal to the contour (i.e.,— n)
and the y axis, then the relation between x, y, 7, and n is

z =2, (t) + nsino, y =y, (1) — ncos
dr dy 2.2

Yo enses = (1 -y '2)12 Yo Ginse—u. cos
- cose = (1 -y, )" pe: sins=y, coss

The following formulas relate the projections of u, v and U, V of the gas velocity vector in the xy and Tn
systems respectively:

U= ucos0o 4-vsino, V=wusing — vcoss

u=—Ucoso —Vsing, v=Usinoc — Vcosag

Then these relationships give the following form to the equations describing the gas flow in the wall
layer where P = O:
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Here K is the curvature of the nozzle wall.

From the first three equations of (2.3) we obtain in the usual way the condition for confirm ation of the
total enthalpy, while the third equation is used with the definition of entropy and the absence of irreversible
processes in the wall layer to derive the entropy conservation condition along each current line:
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2h+ U~V =2H{\), s=S{ 12.4)

Here s is the specific entropy of the gas, which is a known function of p and £, while the current func-
tion ¥ is defined by the following differential equation in accordance with the last equation in (2.3):

d — — cypUdn + cy’ (1 -+ nK) pVdr (2.5)

and by specification of the current function ¢y, at the wall; the functions H(¥) and S(¥) are determined by the
total enthalpy and entropy at the point of intersection of the given current line with the interface. The con-
stant ¢ in (2.5) is best taken such that ¢ is unity when ¢ equals 0 at the symmetry axis.

In the new variables, the condition for absence of flow at the nozzle wall. i.e., the first equation from
(1.2), is written in the form

Vo=V (1, 0) =0 2.6)

3. The solution to (1.1) that describes the flow of the two-phase mixture outside the wall layer of
pure gas will be derived by expanding all the dependent variables with respect to the parameters €,= ]/fﬂ-f

and &= 1/¢4; the corresponding expansions are taken inthe form

o=w0,+A2 ..., p=p. 15 Ap—+..) 3.1)

s 5 Pse (1 - "/\.Os - )

where w is any parameter other than p and pg; A¢ = €£,¢+ & ¢,, and the sets of three dots denote terms of
higher order of smallness in £, and &,.

The terms with the subscript e in (3.1) correspond to equilibrium flow, which occurs when &,=¢, =0,
with no lag of the particles in velocity or temperature. These parameters are determined [2a] by the flow
equations for a perfect gas with %, for the ratio of the specific heats, density pyo. and enthalpy

hze == %e Pe i (Tc - 1) Qe
When there is uniform flow at x= —, i.e., when (1.4) is obeyed, the calculation for an equilibrium

two -phase flow is similar to that for a pure gas in amounting to integration of two differential equations
{(for continuity and absence of vortices), which can be put [1] in the form

f %, 1 > aup "y — 1 ;) 2, — 1 1 ve, 4up, ou,
— 2 . 2 —t. L AU | SR T I R — 2 a2 . _ A
({ M FL ) T e -x,,+1"8) 9y : %c-'r‘("" aRTl ey “, +1 dy =0
(3.2
du,, dr, )
Ay T T
Here the other parameters are expressed in terms of u, and v, by the finite relations
®,—1 #,—1 N\, . .t .
Pre - 2 2 7. v Je UL TES P = Mg,
(920}'2 pc
p“‘ — (1 —’n,) Pres FB = " s Tp. =5 (3.3)
e Ve
1(" 1 i}
h, = 119 Use = Ugr  Ugp =" Vo Ise=7e

The equations for the next terms in the expansions for o, p,, ... and p,, p,... are found by substitut-
ing (3.1) into (1.1) and equating the terms to the first powers of €, and &, respectively. The resulting linear
equations for the coefficients to €, and & may be combined as equations for 4p, Ap, ..., and these can be
transformed to a system of five linear differential equations for Ap, Ap, Au, Av,and Ag,, together with five
finite relationships for the other parameters. The differential equations can be put in the form

Ly (0, Aw, Ap, Ap,) =0 (3.4)
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Here L; are differential operators (i=1, ...,5), which are quasilinear with respect to «, and linear
with respect to the other variables; by we we understand ue and ve, while by w we understand any of the para-
meters p, u, and v, or sets of these. The definition of A¢ means that the terms in (3.4) containing only the
equilibrium quantities \i.e., @e and their derivatives) enter into the equations with the factors €, and &,.

The following are the finite relationships defining the deviations from equilibrium in the other parame-
ters of the mixture:

AT o 2 P P (AP 4y

AT L — Tt do, Bk '(z—1n,(pp 3

Auo = Au — e uu’, Avg-- Av— euo, (3.5)
_ #, -1

AT, — AT + ¢, o 6u,.q.9.°

where the prime denotes a total derivative with respect to x along the current line for the equilibrium flow,
the defining equation being y'= v, /u,.

Equation (2.1 defines the form of the interface, and it gives the following equation when the third and
fourth relationships from (3.5) are incorporated together with the condition from (1.2) for the absence of
flow at the wall. omitting small terms of higher order:

.’/u'l - ydl = Eluu-ez/'w” (36)

which shows that the thickness of the wall layver along v, i.e., the difference %, — yg. and hence also along n,
is of the order of £,, and in this approximation increases decreases) on parts with positive (negative) curv-
ature of the wall. From (3.6) we find that the laver free from particles first appears at the point where

Yo =0 if to the left of that point one has y,," everywhere negative |point a in Fig. 1). If yw" = 0 everywhere
along the contour, as in the nozzle considered below with hyperbolic generator, then the wall layer of pure
gas has zero thickness only at an infinitely remote point {(for x——«). It will become clear below that the
changes transverse to the wall layer are quantities of the order 0(1) apart from the pressure, thermodynam-
ic parameters of the gas, and velocity component U, The thickness of this layer is nyg= 0 (e), so we get
first of all equations that enable one to find the corresponding parameters to 0 (810) = 0 \1); it will be shown
at the end of the following section that a simple modification to the equations enables one to calculate the
parameters in the wall layer with an error of order 0 (g, &),

It follows from n, ~ €, in conjunction with the last equation of (2.3) and the zero flow condition of (2.6),
as for an ordinary boundary layer, that V~ €, in the wall layer; then the second equation in (2.3} gives that
the change in p transverse to the layer is of the order of €. i.e., py, — Pg= 0 (g,), so to an accuracy 0 (1)

p(T, ) = Pue(T)  O<nny (3.7)
while the other equations of (2.3) or the equivalent ones (2.4) take the form
2k (pye. 0) + U2 =2 H), 5 (pwe 0) = S (V) (3.8)
The functions H(¥) and S() on the right in (3.8) are calculated in this approximation from the equilibri-

um values for the total enthalpy and entropy of the gas at the nozzle wall {the corresponding quantities at
the wall and at the interface line differ by the order of €, for an equilibrium flow), i.e.,

2H@) = 2h 4 Uyer S W) = sy {3.9)
One can relate the functions of x on the right in (3.9) and ¢ when we have determined vq=¥d &); the
latter is found in each section 7 = 7 (x,,) = const by integration from n= 0. where ¢(7, 0) = ¢y, to n= nq for
(2.5), the result to terms in £, being put in the form
dy = —cy, pUdn (3.10)
Here nj is calculated from yq4 as found from (3.6) using (2.2). One performs a sequential calculation

for sections T equals constant in order of increasing 7 from the point where the wall layer appears via
(3.6)-(3.10), which enables one to determine H(¥) and S(¥), and the distribution in n for all parameters apart
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from V~ €, in each cross section.

The wall layer of low-entropy gas influences the entire flow, producing parameter changes of the or-
der of £,; when the calculations have been performed for this layer, the effects are considered, as for an
ordinary boundary layer via the displacement thickness

n

. v
6* (1) =-‘-S [1 —(;}T]d"
0 we

and successive calculations for the equilibrium flow, the process being performed for a contour derived
from the initial one by adding 6* , which at each point is marked out along the normal n. If 6* is positive
(negative), i.e.,yy , then the ordinate is reduced (increased). If this conversion is not performed, one has,
as for a boundary layer, that the results correspond to a contour deformed analogously by —&*.

It is clear from this analysis that everything said in this section about the wall layer applies for any
€;, an arbitrary resistance law for the particles, and so on provided that the layer thickness is small Uf
the gas expansion is sufficiently smooth, this often applies even for comparatively large €. In the corres-
ponding arguments, one should understand by €, the thickness of the wall layer, as referred to the charac-
teristic dimension of the nozzle. On the other hand, it is obligatory for €, and €, to be small for the equa-
tions describing the flow at the core to apply, although the results are applicable for any resistance law and
any mode of heat transfer for the particles. This arises because any of the laws give formulas corres-
ponding to Stokes flow after appropriate linearization if there is only slight dynamic and thermal lag in the
particles.

4. In the calculations whose results are given below we have taken the solution to (3.2) as calculated
from formulas analogous to those of (4], in which an expansion was used with reference to the parameter
€ = VR, where R is the radius of the curvature in the minimal cross section {(at x= 0), as referred to the
radius (for ¥= 1) or the half height (for ¥ = 0) for the nozzle in that section. When we have introduced new
variables (z= xR™"/? and w= vR'?), these formulas become up to £ as follows:

U (Zy .7/) = Qg (Z) + e [bo (z) + y2b1 (z)] (4.1)
we (2, ) = ya1 (2) + ey (b, (2) + y?b, (2)] '
where the symbols used here and subsequently differ from those of [4].
The function g gives the distribution in z for the axial component of the velocity in the one-dimension-

al approximation, and this is found from the ordinary differential equation

. . Xt ) ,
A —a)ag + (14 V) (1 — %71 ao-) a,{lny,y =0 4.2)
which is integrated subject to the initial condition a,(0}= 1; function @, is expressed via @y as a,= a,(In y,)"
Note that here the prime denotes derivatives with respect to z.

When q, and a, have been determined, functions b; in (4.1) are found from a solution of one differential
equation and three finite equations:

%, —1 / “, =1
(1 —a?®) by’ = 2a.by|ay’ -~ (1 +v) b ) b (1 --v) Li —% 71 a? | b

bh=a'/2
%, —1 8
B4-v) (1 Tx, -1 aa"’) ba — %, 7 1 aoahr —~ (1 — ac®) by’ + (4.3)
) , %, —1 =1, ( v, —1
- 2ab1 [ao -+ WU +v) a1]+a13 [xe+1a“ + \1 +Wv)al.

bz == (bo -+ Y1) (10 Ypp)’ — ¥y, %bs

The factor to by in the first equation becomes zero for z= 0, so the initial condition that provides
finiteness and continuity in the solution is derived by equating to zero the right part of this equation for the
same section; then, as y ' (0)= 0, we find a;'(0) from (4.2) to get

514



1+4-v “e
by (0) = — ek b (0) = - b2 (0) = -~ b3 (0) = — T8 ay {0)

—

1+ v\ "

», +1

a0 =0, a0 = ( (4.4)

Integration of {4.2) and of the first equation in (4.3) is carried from the minimum section z= 0 inde-
pendently towards the negative and positive directions of z; one proceeds from the initial section using ex-
pansions in terms of z for a, and h,. If we take z sufficiently small, we need consider only two terms, and
the h;'(0) that needs to be added to (4.4) in that case is

3= 2v
by’ (0) — — IO ay’ ()

We give below the expressions used in the calculation, which give the values of the derivatives for
the other coefficients for 7= 0:

34205 Vg + 3

a’(0) =1, b (0) = a/' (0), by (0) = — e
33 v

, 213=-( V) (2, + 3)] 3— 2%
WO =TS E s @ s

» 9 — 12 - ®2 3 s
a’" (0) = \6 ay’? (0) — 5 a)’ (0)

The following equations are obtained from (3.4) and {3.5) after converting to the variables 7 and w,
replacing & by €i°= &p/f, substituting from (4.1) for the equilibrium distributions of the parameters, using
conditions (1.2), and discarding terms of orders €, £&;° and above:

AP = #y oo (1 — MPD'T, Ap' — wpocM2 Ap’ + T,

Au’ — —aydp’ — Au(lnag)'. Ap, — Ap +- Ty
Aw — yAu(lny,), AT — 3P _ Fo ag
Pen Pen
; ) XPuy P Ap N . , (4.6)
Al — ICERE» (E; — Ap) ,  Aug = Au— 87044,
Aw, = Aw — e (ay'yy + aoty”) ¥ ¥ Vo

® o
AT, = AT —g,° & bayta,’

K m
¢

Here and subsequently M¢ = ag?'PZeo/Kepeo is the square of the Mach number for the equilibrium one-
dimensional flow; the subscript zero is attached to parameters whose calculation is performed from (3.3)
with omission of vy and with u_ replaced by a,, which corresponds to equilibrium values for the correspond-
ing quantities as obtained in tﬁe one-dimensional approximation. The functions I in 4.6) are

I = [ Ap mAp — (1 — m) Ap, — 2

L Peo

Aue 8 (7'5—1)2 (t—m) B .
T T, (Ap — Aps)j Ozeolody’ + By + D,

[, =, — 2 —2—5 + mAp 4 (1 —m) A'()S-‘ Opeol’

-

|
l
G = &,"(1 —m)(2ay"? - agty") Pxeetto

SH 12 1 1 - “e < ” S i
®, =1 =m)(1 — =) {Elyao P8 mx, - 18,°8aga0” -+ (6)° + 2:,°8) a"lz_]‘} Ozeglly

1f I,(0) = 0, the right part of the first equation in (4.6) becomes infinite in the section z= 0, where M,
= 1; therefore, as in the case of (4.3), we have to put I' {0} = 0 in order to provide a bounded and continuous
solution, which gives a boundary condition for the integration of (4.6). The other boundary conditions are
formulated in accordance with (1.3) and (1.4) as linear relationships hetween the Au, Ap, ... for z=—; for
instance, it follows from (1.3) that for z = —= we have

Aug = Au, Aws = Aw, ATq== AT



In this approximation, these equations are met automatically by virtue of the last three eguations of
(4.6), since in these cases we lose the added terms standing on the right in these equations for z =—~=, On
the other hand, the relationships following from (1.4) are not obeyed identically, and they give the three
lacking boundary conditions at z = —=, The solution to the resulting boundary-value problem is difficult
to obtain, since there is one condition at z= 0 and three at z= —«, but it can be carried through, as is done
below, by substituting a Cauchy problem, which gives the lacking boundary conditions at z= 0, for instance,
by putting here Ap, Apg, and A as zero. As a result we have

Ap = Apy = Au =0, Ap = —(®, 4 D)%ea” (2= 0) 4.7)

We move away from the section z= 0, as in the case of (4.2) and \4.3), by using series expansions:;
the following equation gives the derivative 40" at z = 0, which is necessary in accordance with {4.6) and (4.7):

Ap* = Ty/2 (1 - #,)a’

where all the quantities are taken at z= 0, while

(x, — 1)
Iy {(1 B m) [1 +5 _(*’;x_} 03 . ”eol} aol__ (Dll _ ‘Dz’ _ Keaou_xgaolz

(

O =e1° (1 —m)(Sa’ay” i-ar’’’)
(1 —m)(x, —1)°

. [e2°a,"8 4 (281° = 5e2°0) ay’as”]

O =281°1 —m)(1 —%,)ar’as” + 8

@3 =e1° [(1 - v) (a1’ + a1?) = 2"

The values of the derivatives a;" and a;™ at z= 0 are calculated via (4.5); it is readily seen that all
the quantities different from Ap, Ap, Au, and Apg in the differential equations of (4.6) and the initial condi-
tions of (4.7) are not dependent on y. Then the other relationships of (4.6) imply that only Aw and Awg are
dependent on y, while the other terms are functions of z alone.

Of course, the values of the parameters at z= —= obtained from solution of the Cauchy problem do
not satisfy the conditions of (1.4), and these in that case are used to calculate the corrected values for m,
the corrections being of order £, and &°, together with the critical velocity g« and the density p, of the
mixture. The latter are found from the first two equations of (1.4), as written as

%P +i B (®, +1)g.2 ] P gy
(., —Vpy 2 208, —1) (pz)xe Kep*xe_l

We now show how one can take into account the correction of order 0 (si) in calculating the parameters
in the wall layer with hardly any change in the relationships previously derived; in accordance with (3.7),
the pressure in the wall layer in this zeroth approximation is constant and equal to the equilibrium value at
the wall; incorporation of terms of higher order of smallness gives

dp / on = pUK

where K is the wall curvature, as in (2.3),

If the nozzle has a sufficiently smooth contour, the curvature at any point is of the same order as
that in the minimal section, or even less, so K ~ ¢ ; therefore, taking into account the thickness of the wall
layer (nd ~£), we get that the difference (p_, — p,) is zero also in the next approximation. As a consequence,
to incorporate the first-order terms on the right in (3.7), (3.8), and (3.9) we have to substitute for the quan-
tities with subscript we the corresponding parameters on the separation line, which are found incorporating
Ap, Ap, ... and the displacement effect of the wall layer; the last, and also the Ap, Ap, ..., can here be cal-
culated in the one-dimensional approximation, neglecting quantities of higher order. As one has to find (¥
- ¢w) in order to determine U and p with accuracy £ inclusive by employing an accuracy 812, the y,, in
(3.10) has, in accordance with (2.2), to be replaced by y=y,—n cos o; then yj. and hence also ny, are de-
termined by combined integration of (2.1) and the fifth and sixth equations in (1.1), in which one substitutes
u and v calculated for the core of the flow with accuracies €; and &, inclusive. Finally, V ~ &, is found by in-
tegration with respect to n in the last equation in (2.3), which can be given the following form in conjunction

with the other equations in this system:
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All the quantities in this equation, except V, are taken in the zeroth approximation; V is zero at the
wall, i.e.,for ¥ = lp"'w), in accordance with (2.6),

5. The approach developed here has been applied to calculate the flow of a two-phase mixture in an
axially symmetrical hyperbolic nozzle, whose shape was specifieq as Yy = (1 0.2 x2) 2, which corresponds
to £ = 0,2, The shape was symmetrical about the y axis, and for |x|—«< had as asymptotes straight lines
with lyw'f = v5; the constants in the equations were taken as n= 1.2, 6= 1.0, m =0.25, and ol = ¢9= 10,
which gives £,= €= 0.1 and n,= 1.125.

The calculations were performed with an M-20 computer, incorporating the terms of zero and first
orders in €, €, and £ for the core and the wall layer; the differential equations of (4.2), (4.3), and (4.6)
were integrated from the section z= 0 by the Runge— Kutta method; in this case, the wall layer actually ap-
pears at x = —«, but the calculation actually began at x,=—1.0, where it was assumed that ny = 0; it was
found from analogous calculations with x,= —0.5 and —2.0 that this choice provides an accuracy quite suffi-
cient for graphical representation of the results.

Figures 2-5 show some of the results; in Fig. 2 the scale on the y axis is twice that along the x axis,
while the x axis itself has been brought into coincidence with the line y= 0.5; this shows the nozzle contour,
the interface (broken line), and the lines of constant Mach number (the corresponding values are given as
figures near the curves). The Mach number M= g/ was calculated here from the speed of sound in the gas
a= (up/p)m, which defines [4-14, 20] the type of system in (1.1), In this case, the region occupied by the
particles has a gas speed tand especially a particle speed) that remains subsonic very far into the expand-
ing part of the nozzle; on the other hand, the value unity is attained near the minimal section by g/ay, where
ay =~ nphs) i/2 is the equilibrium velocity of a sound in the mixture {this meaning for a5 applies only for
those points in the flow at which there is no thermal or velocity lag by particles),

The solid, broken, and dot-and-dash lines in Tig. 3 represent the variations with x for the nonequil-
ibrium terms (A¢), the pressure, and the axial components of the velocities for the gas and particles re-
spectively; the muximum difference u—ug= Au — Ayg occurs near the minimum section of the nozzle, which
corresponds with known results from one-dimensional calculations. The above analysis shows that in this
approximation the incorporation of the particle lag effects is also essentially one-dimensional. The values

of Au and Aug and also the velocities of gas and particles at x— —« tend to zero, while Ap (—c) = ~0.13.

Figure 4 gives a more complete representation than that of Fig. 2 for the nonuniformity of the flow
in the wall layer; it shows U varying with n for various sections of the nozzle (the numbers on the curves
are the values of x_J). In considering Fig. 4 it should be borne in mind that U has been referred to the crit-
ical velocity of the equilibrium two-phase flow. The broken line in Fig. 4 corresponds to the interface.
Below this, the lines giving the distribution of U in n for 7 = constant are almost parallel to the horizontal
axis, which is due to the small nonuniformity of the parameters at the core of the flow. This is clear also
from Fig. 5, which shows the variation in M along the symmetry axis (solid line}, along the interface (dot-
ted line), and at the wall (dot-and-dash line). Other results [10, 11, 14, 21] confirm this for the supersonic
part of the flow in a Laval nozzle, and also the marked nonuniformity in the parameters near the wall when
there is a high particle content; this nonuniformity decreases as m increases, i.e., as the flow of particles
decreases.
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As a two-phase flow gives rise to a comparatively thin wall layer, one naturally has to examine the
roles of the viscosity and the thermal conductivity of the gas, which have been taken into account in the above
model only for the phase interaction; in fact, these dissipative effects are important only near the wall,
which is the reason for the formation of a viscous boundary layer. The above analysis for the flow in the
wall layer of pure gas applies only when this layer is substantially thicker than the viscous boundary layer
formed at the wall. The thickness of the latter is determined by the Reynolds number, which is a dimen-
sionless parameter independent of the dimensionless parameters characterizing the phase interaction, so
both situations can arise.
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